83 | 0 | 35 |
下载次数 | 被引频次 | 阅读次数 |
高铝钢连铸会发生剧烈的钢渣界面反应,影响连铸顺行。为了抑制钢渣反应,开发低反应性保护渣已成为高铝钢保护渣研究的重要方向,而不同工艺类型高铝钢对保护渣性能有着各异的要求。因此使用高温物性综合测定仪和偏光显微镜,系统研究了高铝钢圆坯和方坯传统保护渣的理化性能及渣膜矿相导热性能,为设计性能更加稳定的高铝钢低反应性保护渣奠定了基础。研究结果表明,高铝钢圆坯和方坯保护渣都具有低碱度、低熔点和低黏度的特性,圆坯保护渣的熔点和黏度相对更低。圆坯保护渣的结晶温度为1 250℃,而方坯保护渣的结晶温度为1200℃。它们的临界冷却速率分别为10℃/s和7℃/s。圆坯和方坯渣膜的结晶矿物都以枪晶石和霞石为主,方坯渣膜结晶率在50%左右,圆坯渣膜结晶率则高达70%以上。在100℃~300℃的温度范围内,圆坯和方坯的渣膜导热系数集中在0.35~0.8 W·(mK)-1,圆坯渣膜的导热系数低至0.5 W·(mK)-1以下,控制传热的能力较好。
Abstract:The continuous casting of high-alumina steel will undergo a violent steel slag interface reaction,which will affect the continuous casting anterograde.In order to inhibit the reaction of steel slag,the development of low reactivity mold flux has become an important direction in the research of mold flux for high alumina steel,and different process types of high alumina steel have different requirements for the performance of mold flux.Therefore,the physical and chemical properties and the thermal conductivity of the slag membrane mineral phase of the traditional mold flux of high-alumina steel round billet and billet were systematically studied by using a high-temperature comprehensive physical property tester and polarizing microscope,which laid a foundation for the design of low-reactivity mold flux of high-alumina steel with more stable performance.The research results show that high alumina steel round billet and billet mold flux have the characteristics of low alkalinity,low melting point and low viscosity,and the melting point and viscosity of round billet mold flux are relatively lower.The crystallization temperature of round billet mold flux is 1 250℃,while that of billet mold flux is 1 200℃.Their critical cooling rates are 10℃/s and 7°C/s,respectively.Round billet and billet slag film of crystalline minerals are mainly cuspidine and nepheline,billet slag film crystallization rate of about 50%,round billet slag film crystallization rate is as high as 70%or more.In the temperature range of 100℃ to 300℃,the thermal conductivity of the round billet and billet slag film is concentrated in the range of 0.35 to 0.8 W·(mK)-1,and the thermal conductivity of the round billet slag film is as low as 0.5 W·(mK)-1,and the ability to control heat transfer is better.
[1]刘承军,亓捷,姜茂发.高铝钢用新型连铸保护渣的设计开发与应用[J].钢铁,2023,58(9):116-126.
[2]BRANDALEZE E,DI GRESIA G,SANTINI L,et al.Mould fluxes in the steel continuous casting process[M].Science and Technology of Casting Processes,2012.
[3]张翼飞,韩秀丽,刘磊,等.连铸结晶器保护渣物化性能的研究进展[J].钢铁研究,2016,44(1):58-62.
[4]韩秀丽,刘盈盈,刘磊,等.含钛型连铸保护渣性能及应用研究进展[J].钢铁,2022,57(10):10-18.
[5]MILLS K C,FOX A B.The role of mould fluxes in continuous casting-so simple yet so complex[J].ISIJ Internation al,2003,43(10):1479-1486.
[6]何宇明,何生平.结晶器保护渣的润滑与传热控制功能剖析[J].连铸,2021(2):2-6.
[7]李晓军,李欢,李振.CaO-SiO2-Al2O3系保护渣加Li2O对高铝钢20Mn23AlV连铸板坯表面纵裂纹的影响[J].特殊钢,2021,42(4):39-41.
[8]YANG J,WANG L,WANG Q,et al.Challenges in the mold flux design:development of f‐free fluxes and fluxes for casting of high‐Al steel[J].steel research international,2022,93(3):2100123.
[9]LIU Q,WEN G,LI J,ET AL.Development of mould fluxes based on lime-alumina slag system for casting high aluminium TRIPsteel[J].Ironmaking&Steelmaking,2014,41(4):292-297.
[10]何生平,刘亚东,李权辉,等.高铝钢连铸保护渣研究进展[J/OL].钢铁,2024,59(5):1-11.
[11]宗健,董延楠,涂高岭,等.立式连铸P91钢大圆坯表面纵裂缺陷及其控制[J].中国冶金,2024,34(5):65-73.
[12]陈荣凯,刘坤.马标C12D钢方坯角裂漏钢控制实践研究[J].连铸,2018,43(6):74-76.
[13]ZHENG D,SHI C,LI Z,et al.Effect of SiO2 substitution with Al2O3 during high-Al TRIP steel casting on crystallization and structure of low-basicity CaO-SiO2-based mold flux[J].Journal of Iron and Steel Research International,2020,27:33-41.
[14]PARK K T,JIN K G,HAN S H,et al.Stacking fault energy and plastic deformation of fully austenitic high manganese steels:effect of Al addition[J].Materials Science and Engineering:A,2010,527(16-17):3651-3661.
[15]BECKER J J,MADDEN M A,NATARAJAN T T,et al.Liquid/solid interactions during continuous casting of high-Al advanced high strength steels[C]//Aistech-Conference Proceedings-.Association For Iron&Steel Technology,2005,2:99.
[16]OMOTO T,SUZUKI T,OGATA H.Development of“SIPS series”mold powder for high Al electromagnetic steel[J].Shinagawa Technical Report.2007,50:57.
[17]MOON K H,PARK M S,YOO S,et al.Molten mold flux technology for continuous casting of the ULC and TWIP steel[C]//Proceedings of the 8 th Pacific Rim International Congress on Advanced Materials and Processing.Springer International Publishing,2016:735-745.
[18]王杏娟,田阔,朱立光,等.裂纹敏感性钢连铸保护渣应用研究[J].钢铁钒钛,2018,39(2):121-126.
[19]张芳,王艺慈,董方,等.CaF2和B2O3对中碳钢连铸结晶器保护渣物理性能的影响[J].特殊钢,2010,31(4):28-30.
[20]徐薇,张丽,高扬.圆坯连续铸造中拉速与表面温度协调控制系统设计[J].铸造技术,2015,36(11):2722-2724.
[21]STILLINGER F H,WEBER T A.Molecular dynamics simulation for chemically reactive substances.Fluorine[J].The Journal of chemical physics,1988,88(8):5123-5133.
[22]CHRISTIE J K,PEDONE A,MENZIANI M C,ET AL.Fluorine environment in bioactive glasses:ab initio molecular dynamics simulations[J].The Journal Of Physical Chemistry B,2011,115(9):2038-2045.
[23]张晓博,刘承军,姜茂发.分子动力学模拟在冶金熔渣中的应用进展[J].材料导报,2021,35(21):21099-21104.
[24]唐萍,高金星,文光华.连铸结晶器保护渣研究进展及趋势[J].炼钢,2017,33(3):1-19.
[25]王杏娟,王浩南,朱立光,等.不同黏度保护渣在Q235B钢连铸中的应用研究[J].铸造技术,2018,39(8):1750-1753.
[26]李晓阳,何峰,赵春宝,等.CaO-SiO2基连铸保护渣的析晶行为与传热性能研究[J].武汉理工大学学报,2023,45(12):28-32.
[27]LU B,WANG W.Effects of fluorine and BaO on the crystallization behavior of lime-alumina-based mold flux for casting high-Al steels[J].Metallurgical and Materials Transactions B,2015,46:852-862.
[28]MILLS K C,FOX A B,LI Z,et al.Performance and properties of mould fluxes[J].Ironmaking&steelmaking,2005,32(1):26-34.
[29]李殿明.连铸结晶器保护渣应用技术[M].北京:冶金工业出版社,2008:30-31.
[30]张江浩,亓捷,刘承军,等.Li2O对CaO-Al2O3基保护渣结晶性能的影响[J].钢铁研究学报,2022,34(11):1211-1218.
基本信息:
DOI:
中图分类号:TF777
引用信息:
[1]孙昌奇,刘磊,韩秀丽等.高铝钢圆坯和方坯保护渣性能及渣膜矿相[J].华北理工大学学报(自然科学版),2025,47(02):20-28+46.
基金信息:
河北省自然科学基金面上项目(E2024209062):基于微观结构重构的无氟保护渣宏观性能调控研究; 唐山市科技计划项目(24130206C):含硼无氟保护渣的熔化结晶行为与润滑传热机理