28 | 0 | 38 |
下载次数 | 被引频次 | 阅读次数 |
基于相似原理利用物理模拟的方法研究了新型无焦炼铁反应器-氧煤燃烧熔分炉内熔池搅拌情况和液面波动效应。模型射流运动轨迹采用高速摄像机进行采集,并结合图像处理软件利用MATLAB进行二值化处理,以此得到具体实验参数。实验中氧枪倾角分别选择15°、0°、-15°为变量,通过对不同变量结果进行解析,研究了不同变量对熔池内射流行为及液面宏观不稳定现象的影响。研究表明:射流角度的变化主要影响熔池内局部搅拌区域的分布情况,氧枪倾角为上倾斜15°时,射流下部会存在部分搅拌死区,导致熔池下部搅拌的不充分,而氧枪倾角为下倾斜15°可以克服这一问题,且一定程度上减少了射流贴壁对熔池搅拌的影响;除此之外,不同氧枪倾角角度对熔池液面波动的影响不明显。综合分析,在保证流量以及氧枪浸没深度不变的情况下,氧枪倾角为-15°更有利于熔池搅拌。
Abstract:The stirring of the molten pool and the effect of liquid level fluctuation in a new type of coke-free ironmaking reactor oxygen coal combustion melting furnace were investigated based on the similarity principle using physical simulation. The model jet trajectory was captured using a high-speed camera and binaries using MATLAB in combination with image processing software to obtain specific experimental parameters. In the experiment, 15 °, 0 °and-15° were selected as variables for the inclination angle of the oxygen lance, and the effects of different variables on the behavior of the jet in the molten pool and the macroscopic instability phenomenon of the liquid surface were investigated by analyzing the results of different variables. The study shows that: the change of the jet angle mainly affects the distribution of the local mixing area in the melt pool, the oxygen lance tilt angle of 15°, the lower part of the jet there will be part of the mixing dead zone, resulting in the lower part of the melt pool mixing is not sufficient, while the oxygen lance tilt angle of 15° can be down to overcome the problem, and to a certain extent reduces the impact of the jet against the wall of the mixing of the melt pool. Besides, the influence of different tilting angle of oxygen lance on the fluctuation of molten pool liquid level is not obvious. In the overall analysis, under the condition that the flow rate and the submergence depth of the oxygen lance remain unchanged, an oxygen lance tilt angle of-15° is more favorable to the molten pool mixing.
[1]严珺洁.超低二氧化碳排放炼钢项目的进展与未来[J].中国冶金, 2017, 27(2):6-11.
[2]He G, Du X, Qu H, et al. Present Status and Development Perspective of Non-blast Furnace Ironmaking Technology[J]. Multipurpose Utilization of Mineral Resources, 2014:2-5.
[3]王国栋,储满生.低碳减排的绿色钢铁冶金技术[J].科技导报, 2020, 38(14):68-76.
[4]杨天钧,张建良,刘征建,等.低碳炼铁势在必行[J].炼铁,2021,40(4):1-11.
[5]张晓华,师学峰,赵凯,等.非高炉炼铁工艺流程发展现状及前景展望[J].矿产综合利用,2020(2):8-15.
[6]Wang M, Ren Rong-xia, et al. Discussion on the latest technology and process route selection for molten reduction ironmaking[J]. Iron and Steel, 2020, 55(8):145-150.
[7]王敏,任荣霞,董洪旺,等.熔融还原炼铁最新技术及工艺路线选择探讨[J].钢铁,2020,55(8):145-150.
[8]Song Cheng-xiu, Song Wi-jin. From COREX to FINEX:The Case of Path-revealing Innovation in POSCO[J]. Journal of Korea Technology Innovation Society, 2010, 13(4):700-711.
[9]Changqing H U, Han X, Zhihong L I, et al. Comparison of CO2 emission between COREX and blast furnace iron-making system[J].Journal of Environmental Sciences, 2009, 21(supp-S1):S116-S120.
[10]贾国利,张丙怀,阳海彬,等. COREX 3000熔融还原炼铁工艺能量利用特征[J].中国冶金, 2007(3):43-47.
[11]高建军,万新宇,齐渊洪,等.回转窑预还原-氧煤燃烧熔分炼铁技术分析[J].钢铁研究学报, 2018, 30(2):91-96.
[12]田想,凌海涛,王海军,等.板坯连铸结晶器内液面波动及卷渣行为物理模拟[J].连铸,2024(3):41-48.
[13]Shen Y, Zhao K, Zhang Q, et al. Physical simulation of macroinstability behaviour of liquid level in oxygen coal combustion melting and separation furnace[J]. Ironmaking&Steelmaking, 2022, 49(5):522-540.
[14]申耀宗,张巧荣,赵凯,等.氧煤燃烧熔分炉熔池内射流行为规律的物理模拟[J].中国有色冶金,2022,51(3):22-29.
[15]唐天平,朱荣,魏光升,等.电弧炉埋入式喷吹熔池搅拌水模拟优化研究[J].工业加热,2019,48(1):49-53.
[16]Li M M, Li Q, Kuang S B, et al. Coalescence characteristics of supersonic jets from multi-nozzle oxyen lance in steelmaking BOF[J].Steel Research international, 2015, 86(12):15-17.
[17]杨琦.基于分银炉模型的速度场与湍流动能研究[D].昆明:昆明理工大学,2017.
[18]赵建鹏,唐国章,曾亚南,等.100t钢包底吹氩搅拌钢液去除夹杂物数值模拟研究[J].华北理工大学学报(自然科学版),2022,44(3):31-38.
基本信息:
DOI:
中图分类号:TF55
引用信息:
[1]毕雪亮,申耀宗.氧煤燃烧熔分炉内氧枪倾角对熔池搅拌影响的物理模拟[J].华北理工大学学报(自然科学版),2025,47(02):10-19.
基金信息:
国家重点研发计划(2017YFB0603802):全氧冶炼合理炉型设计及高能量密度熔炼工艺研究