nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.47 114-124
基于Legendre多项式对变分数阶粘弹性微梁数值模拟
基金项目(Foundation): 唐山市科技计划项目(22130201G):融合大数据深度学习的高炉炉况智能研判机理研究; 河北省高等学校自然科学研究项目(QN2023153):基于转炉炉口火焰光谱调制的烟气分析动态矫正模型研究
邮箱(Email): hanyang@ncst.edu.cn;
DOI:
摘要:

微梁是工程领域中常见结构之一,因此对微梁进行深入研究至关重要。本文对可变分数阶粘弹性微梁的控制方程进行深入的变分数阶建模与数值求解,并进行一系列动力学分析和讨论。采用一种新的数值算法,直接在时域内求解变分数阶非线性粘弹性微梁的控制微分方程,并研究微梁在不同参数下的位移情况。进行均布载荷和阶跃载荷条件下微梁挠度的数值模拟。结果表明研究结果可以为未来研究和工程应用提供可靠的数值计算方法。

Abstract:

Microbeams are one of the common structures in the field of engineering, so it is essential to conduct an indepth study of microbeams. In this paper, the governing equations of variable fractional viscoelastic microbeams are modeled and numerically solved, and a series of dynamic analyses and discussions are carried out. A new numerical algorithm is used to solve the controlling differential equation of the variable fractional nonlinear viscoelastic microbeams directly in the time domain, and the deflection and displacement of the microbeams under different parameters are studied.Numerical simulation of the deflection of microbeams under uniform load and step load is carried out. The results show that the results can provide a reliable numerical method for future research and engineering applications.

参考文献

[1]赵彦飞.基于非局部应变梯度理论下分数阶粘弹性纳米梁、杆的振动[D].兰州:兰州理工大学,2024.

[2]韩存弟.Bernstein多项式算法求解三类粘弹性材料结构的变分数阶微分方程[D].秦皇岛:燕山大学,2022.

[3]张有畅,吴君正,张乘胤,等.粘弹性-弹性层合微悬臂梁的自由振动[J].力学季刊,2017,38(2):369-378.

[4]蔡晓升,张能辉,刘翰林.粘弹性-弹性层合微梁尺寸依赖的应力松弛行为[C]//中国力学学会结构工程专业委员会,广州大学,中国力学学会《工程力学》编委会,清华大学土木工程系,水沙科学与水利水电工程国家重点实验室(清华大学).第30届全国结构工程学术会议论文集(第Ⅰ册).上海大学力学与工程科学学院;上海市应用数学和力学研究所上海市力学在能源工程中的应用重点实验室,2021:4.

[5]Baltaeva U,Babajanova Y,Agarwal P,et al.Solvability of a mixed problem with the integral gluing condition for a loaded equation with the Riemann-Liouville fractional operator[J].Journal of Computational and Applied Mathematics,2023:115066.

[6]Jalili B,Jalili P,Shateri A,et al.Rigid plate submerged in a Newtonian fluid and fractional differential equation problems via Caputo fractional derivative[J].Partial Differential Equations in Applied Mathematics,2022,6:100452.

[7]Diethelm K,Diethelm K.Mittag-Leffler Functions[C]//The Analysis of Fractional Differential Equations:An Application-Oriented Exposition Using Differential Operators of Caputo Type.Springer Berlin Heidelberg,2010:67-73.

[8]Ghayesh,Mergen H.,Hamed Farokhi,and Marco Amabili.“Nonlinear dynamics of a microscale beam based on the modified couple stress theory[J].”Composites Part B:Engineering 2013,50:318-324.

[9]Loghman,Ehsan,et al.“Nonlinear random vibrations of micro-beams with fractional viscoelastic core[J].”Probabilistic Engineering Mechanics,2013,50:318-324.

[10]Mironowicz W,?niady P.Vibration of linear structures due to jump‐discontinuous,non‐interrupted,stochastic processes[J].Earthquake engineering&structural dynamics,2022,69:103274.

基本信息:

DOI:

中图分类号:O242;TB30

引用信息:

[1]刘芸辰,屈静国,杨爱民等.基于Legendre多项式对变分数阶粘弹性微梁数值模拟[J].华北理工大学学报(自然科学版),2025,47(02):114-124.

基金信息:

唐山市科技计划项目(22130201G):融合大数据深度学习的高炉炉况智能研判机理研究; 河北省高等学校自然科学研究项目(QN2023153):基于转炉炉口火焰光谱调制的烟气分析动态矫正模型研究

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文